Research Groups – Institute of Materials and Environmental Chemistry http://www.ttk.hu/aki/en/ MTA TTK | Research Centre for Natural Sciences Mon, 03 Jul 2023 13:35:19 +0000 en-US hourly 1 https://wordpress.org/?v=6.2.2 Winner of the Best Paper Award of INORGANICS http://www.ttk.hu/aki/en/winner-of-the-best-paper-award-of-inorganics/ Mon, 03 Jul 2023 13:05:53 +0000 http://www.ttk.hu/aki/?p=1640 The Best Paper Award was given to researchers of the institute for the publication:

A Quasi-Intramolecular Solid-Phase Redox Reaction of Ammonia Ligands and
Perchlorate Anion in Diamminesilver(I) Perchlorate
By Lara Alexandre Fogaça, Laura Bereczki, Vladimir M. Petruševski, Berta Barta-
Holló, Fernanda Paiva Franguelli, Miklós Mohai, Kende Attila Béres, Istvan E
Sajó, Imre Miklós Szilágyi and Laszlo Kotai
Inorganics 2021, 9(5), 38; doi: 10.3390/inorganics9050038

]]>
Peptide-Based Vaccines Research Group http://www.ttk.hu/aki/en/peptide-based-vaccines-research-group/ Thu, 16 Feb 2023 12:58:19 +0000 http://www.ttk.hu/aki/?p=1450 The Peptide-Based Vaccines Research Group was established in 2021 with the support of the MTA’s Momentum Programme. The peptides, peptide derivatives and conjugates produced in the group are used in various research areas. New formulation strategies are being developed to enhance the biological activity of synthetic peptides and to maintain their stability. Using colloidal chemistry systems, we develop peptide delivery platforms with several advantageous properties such as target delivery, programmed drug release and enhanced immunogenicity.

Main research topics:

– Synthetic vaccines
– Dendritic cell targeting with peptides
– Antimicrobial peptides and peptide derivatives
– Synthetic vaccines for immunotherapy
– Melanoma-specific peptides and peptide derivatives

Homepage of the Biological Soft Matter Platform

 

Head of the research group

Kata Horvati

Members

]]>
Solid State Energy Storage Research Group http://www.ttk.hu/aki/en/solid-state-energy-storage-research-group/ Thu, 26 Nov 2020 15:22:20 +0000 http://www.ttk.hu/aki/?p=1088 Research interest

Our research group deals with the development of 4th generation Li-ion batteries (solid state batteries and Li-ion batteries with conversion-type cathodes) and post Li-ion (Na-ion, Mg-ion) battery functional components. Moreover, we investigate the complex, so-called electro-chemo-mechanical ageing processes of these battery systems. We develop and investigate new-generation solid state Li-ion conductive electrolytes/composite electrolytes, and electrode active compounds. Our ultimate goal is to manufacture prototype battery cells with high energy (>400 Wh/kg) and tuneable power density performance with excellent safety attributes (non-flammable, no thermal runaway) for future mobile applications.

Leader

Róbert Kun

Members

]]>
Supramolecular Chemistry Research Group http://www.ttk.hu/aki/en/supramolecular-research-group/ Fri, 25 Jan 2019 16:03:27 +0000 http://www.ttk.hu/aki/?p=941 Research interest

The research in our group focuses on the design, preparation and characterization of novel gold(I)-based materials with new and exciting properties.

Supramolecular chemistry—using the paradigm of self-assembly derived from molecular biology—can provide unique materials with new properties for physics, electronics, chemical technology as well as nanotechnology. Metal centres and organic ligands can be assembled into metallosupramolecular structures that exhibit a variety of useful and exciting chemical and physical properties. Our group has been developing new synthetic methods (including solid state mechanochemical synthesis) for the construction of novel metallosupramolecules. Our research activity is also concerned with the structure determination and spectroscopic characterization of these metallosupramolecules.

Starting from gold(I)-diphosphine (diphos) precursors and using the dative Au–X (X = P, N, O and S) bonds and aurophilic Au···Au interactions, we have synthesized and characterized a large number of potentially useful supramolecular gold(I) complexes with well-defined structures (figure-eight, molecular square, dumbbell-shaped coordination polymer etc.) and properties.

yolcas, négyzet, súlyzó alakú koordinációs polimer, stb.) és tulajdonságú potenciálisan hasznosítható szupramolekuláris arany(I) komplexet állítottunk elő.

Our aim is to deeply understand the unusual properties of gold(I)-based supramolecular architectures. The most recent research endeavours of the group include the design of stimuli-responsive materials that can respond to multiple external stimuli, such as heat, light, mechanical pressure or chemical triggers.

Stimuli-responsive supramolecular gold(I) complexes

Responding to a stimulus is a natural phenomenon as most biomolecules are able to change their structures and functions in response to external stimuli. Nature serves as the model for stimuli-responsive materials, but it still remains a challenge to create new materials that respond to various external physical and chemical stimuli.

We have designed, prepared and characterized novel dinuclear [Au2(diphos)2](X)2 complexes based on flexible diphosphine (diphos) ligands that respond to multiple external stimuli, such as heat, light, pressure or chemical triggers. We have discovered that the dynamic phase transformations (crystalline to amorphous) induced by external stimuli alter the solid-state photoluminescence of these gold(I)-based materials. We established the role of intramolecular aurophilic and intermolecular non-covalent interactions (hydrogen bonding, π···π, etc.) in determining the structures and luminescence properties of these diphosphine-based dinuclear gold(I) complexes. These materials show a great potential for applications in luminescent switches, optical data recording, display devices, information storage, security inks and physical/chemical sensors.

We have discovered that a white-coloured blue-emitting mononuclear Au(diphos)(X) complex under mechanical stress transformed into a yellow-coloured red-emitting dinuclear structure containing intramolecular Au···Au interaction. In this case, the stimuli-induced colour and emission colour alterations can be attributed to a reversible neutral-to-ionic (crystalline to amorphous) phase transition. These results give novel insights into the origin of mechanochromism and mechanochromic luminescence of gold(I) complexes.

We have discovered that the nonporous crystals of a [Au2(diphos)2](X)2 complex undergo thermally- and chemically-induced single-crystal-to-single-crystal transformations, which facilitate the transport of the molecular guests through the crystal lattice. We have explained the process of guest release and uptake by a new mechanism. This nonporous gold(I)-diphosphine complex is robust enough to trap guest molecules, but at the same time it is flexible enough to allow guest release without destroying its crystal lattice. This nonporous gold(I)-diphosphine can capture and release CO2 in a controlled manner. These properties are important in facilitating the understanding of the host-guest and gas-uptake properties exhibited by nonporous compounds.

Stimuli-responsive dicyanoaurate-based heterometallic Au−CN−M structures

We have applied, for the first time, mechanochemical solid-state methods to synthesize various [Au(CN)2]-based heterometallic complexes. Heterometallic supramolecules that incorporate metals having absolutely different chemical behaviour generally exhibit sophisticated 2D or 3D structures and unusual properties. We have designed, prepared and characterized dicyanoaurate-based Au−CN−M coordination polymers (M = Me3Sn, Ph3Sn, Me2Sn, Ni, Co, Cu and Zn) that show sophisticated Au···Au linked structures and exhibit intriguing ion-exchange, gas sorption, as well as stimuli-responsive optical and luminescent properties.

Selected publications

Stimuli-responsive supramolecular gold(I) complexes

Anion-, Solvent-, Temperature-, and Mechano-Responsive Photoluminescence in Gold(I) Diphosphine-Based Dimers
A. Deák, Cs. Jobbágy, G. Marsi, M. Molnár, Z. Szakács, P. Baranyai
Chem. Eur. J. 2015, 21, 11495–11508.

Mechano-induced reversible colour and luminescence switching of a gold(I)–diphosphine complex
P. Baranyai, G. Marsi, Cs. Jobbágy, A. Domján, L. Oláh, A. Deák
Dalton Trans. 2015, 44, 13455–13459.

Structural characterization of dinuclear gold(I) diphosphine complexes with anion-triggered luminescence
P. Baranyai, G. Marsi, A. Hamza, Cs. Jobbágy, A. Deák
Struct. Chem. 2015, 26, 1377–1387.

Stimuli-Responsive Dynamic Gold Complexes (Microreview)
Cs. Jobbágy, A. Deák
Eur. J. Inorg. Chem. 2014, 4434–4449.

A stimuli-responsive double-stranded digold(I) helicate
Cs. Jobbágy, M. Molnár, P. Baranyai, A. Hamza, G. Pálinkás, A. Deák
CrystEngComm 2014, 16, 3192–3202.

Mechanochemical synthesis of crystalline and amorphous digold(I) helicates exhibiting anion and phase-switchable luminescence properties
Cs. Jobbágy, M. Molnár, P. Baranyai, A. Deák
Dalton Trans. 2014, 43, 11807–11810.

Guest escape and uptake in nonporous crystals of a gold(I) macrocycle
A. Deák, T. Tunyogi, Z. Károly, Sz. Klébert, G. Pálinkás
J. Am. Chem. Soc. 2010, 132, 13627–13629.

Solvent-assisted spontaneous resolution of a 16-membered ring containing gold(I) showing short Au···Au aurophilic interaction and a figure-eight conformation
T. Tunyogi, A. Deák, G. Tárkányi, P. Király, G. Pálinkás
Inorg. Chem. 2008, 47, 2049–2055.

Self-assembly of gold(I) with diphosphine and bitopic nitrogen donor linkers in the presence of trifluoroacetate anion: formation of coordination polymer versus discrete macrocycle
A. Deák, T. Tunyogi, G. Tárkányi, P. Király, G. Pálinkás
CrystEngComm 2007, 9, 640–643.

Synthesis and solution- and solid-state characterization of gold(I) rings with short Au···Au interactions. Spontaneous resolution of a gold(I) complex
A. Deák, T. Megyes, G. Tárkányi, P. Király, L. Biczók, G. Pálinkás, P. J. Stang
J. Am. Chem. Soc. 2006, 128, 12668–12670.

Stimuli-responsive dicyanoaurate-based heterometallic Au−CN−M structures

Cyanide-bridged bimetallic multidimensional structures derived from organotin(IV) and dicyanoaurate building blocks: ion-exchange, luminescence and gas sorption properties
A. Deák, T. Tunyogi, Cs. Jobbágy, Z. Károly, P. Baranyai, G. Pálinkás
Gold Bulletin 2012, 45, 35–41.

A versatile solvent-free mechanochemical route to the synthesis of heterometallic dicyanoaurate-based coordination polymers
Cs. Jobbágy, T. Tunyogi, G. Pálinkás, A. Deák
Inorg. Chem. 2011, 50, 7301–7308.

Synthesis and structure of a cyanoaurate-based organotin polymer exhibiting unusual ion-exchange properties
A. Deák, T. Tunyogi, G. Pálinkás
J. Am. Chem. Soc. 2009, 131, 2815–2817.

Novel gold(I) diphosphine-based dimers with aurophilicity triggered multistimuli light-emitting properties

Cs. Jobbágy, P. Baranyai, G. Marsi, B. Rácz, L. Li, P. Naumov, A. Deák

  1. Mater. Chem. C 2016, 4, 10253–10264.

Unexpected formation of a fused double cycle trinuclear gold(I) complex supported by ortho-phenyl metallated aryl-diphosphine ligands and strong aurophilic interactions

Cs. Jobbágy, P. Baranyai, P. Szabó, T. Holczbauer, B. Rácz, L. Li, P. Naumov, A. Deák

Dalton Trans. 2016, 45, 12569–12575.

Equipment

Retsch MM400 mixer mill
LINKAM Imaging Station fitted with a LINKAM DSC600 temperature controlled stage and a T95-Linksys
Edinburgh Instruments FLSP920 combined steady state and time resolved fluorescence spectrometer

Collaborations

  • MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged
  • Dr. Pance Naumov Group, Smart Materials for Sustainable Future, New York University Abu Dhabi (United Arab Emirates)
  • Naumov Research Group, New York University Abu Dhabi (United Arab Emirates)
  • Missouri State University, Department of Chemistry, Springfield (USA)

Design synthesis and structural characterization of stimuli-responsive supramolecular complexes

Leader

Andrea Deák

Members

]]>
Green Chemistry Research Group http://www.ttk.hu/aki/en/green-chemistry-research-group/ Mon, 09 Apr 2018 18:37:42 +0000 http://www.ttk.hu/aki/zoldkemia-kutatocsoport/ The aim of the Green Chemistry Research Group is to contribute to the reduction of environmental impact in accordance with the principles of sustainable development and to provide a suitable basic research infrastructure for the environmentally friendly, green technologies. We are studying methodes to produce the chemicals and energy carriers necessary for society, and investigating the compounds leaving to the environment in order to assess their potential damage.

Group Leader:

Robert Tuba

RCNS-HAS: Magyar tudósok körútja 2., 1117 Budapest, Hungary

Mailing Adress: Pf. 286., 1519 Budapest, Hungary

Tel.: +36 1 382 6571
e-mail: tuba.robert@ttk.mta.hu

Robert Tuba – Google Scholar

Main research areas:

Homogeneous catalysis, olefin metathesis –  facebook site

Our research programs focus on the design, the understanding and the implementation of reactions catalyzed by transition metal complexes in terms of important organic reactions. Our aim is to develop and observe fine chemical synthesis, materials science, transformation of renewable raw materials, and pharmaceutical researches. During our investigations, we are studying and developing new methods, synthesis routes and catalysts. The aim of our metathesis researches is to develop environmentally friendly chemical processes based on new innovative materials, polymers, new generation metathesis catalysts and olefin metathesis, and to develop their practical application possibilities.

Research topics:

  • Biomass utilization via olefin metathesis- This research project focuses on the metathesis of algae phospholipids produced as a side product during the synthesis of high-value algae oil. The aim is to develop chemical process for the utilization of algae phospholipids as sustainable raw materials for the production light hydrocarbons, polyamides and polyesters. Following the transesterification of phospholipids the highly unsaturated fatty acid esters are converted to light hydrocarbons or biodegradable polymer’s raw materials via cross-metathesis using ethylene, 2-butene, acryl- and fumaronitrile. The metathesis reactions are carried out by using homogeneous Grubbs metathesis catalyst systems or silica supported catalyst in cross-flow processes. Following the preliminary investigations, one-pot metathesis reactions of phospholipid in water using water-soluble metathesis catalyst will be investigated. This approach is not only green but economic as it enables the isolation of the non-polar reaction product via liquid-liquid phase separation.
  • Development of hydrogen storage systems- our aim is to develop a hydrogen storage system, which is effective under mild conditions, non-toxic and built up from environmentally friendly materials. With the use of cheap catalysts, the reactions are carried out in water or in an aqueous suspension to provide a user-friendly, easy-to-use energy storage system. New, unpublished, but simply and cheaply synthesizable polycarbonyl/polyalkoholic compounds (eg. polyvinyl alcohol type of compounds, polymers of cyclic polioxo compounds, polymers linked to polycarbonyl compounds) are dealt with. The catalyst systems are investigated upon effective participation under these conditions in aqueous media even under mild conditions, specifically to store as much hydrogen as a unit weight polymer.
  • Biopolymer synthesis – polyvinyl alcohol copolymer-based hydrophilic synthetic polymers are used as drug carriers, implants composites or environmentally-friendly packaging materials. The number of OH groups along the polymer chain affects the polarity of the drug carrier matrix, the quantitative modification of which allows the polarity of the polymer to be fine-tuned and thereby the predefined release of the active ingredient in the body. Olefin metathesis-based polymerization processes allow the synthesis of a variety of well-defined polymers with different functionalities.
  • Synthesis of molecularly imprinted polymers – an improved drug delivery protocol for targeted cancer therapy can be the combination of immunotoxin masking and controlled drug release, “Molecularly im­printed polymers” (MIPs) could be used for this goal, which has been extensively used as synthetic molecular recep­tors and protein carrier materials, but there have been few applications in drug delivery. Targeted toxins (TT) are immunotoxin proteins, they consist of a protein-based toxin that induces cell death and a ligand that binds to a cancer cell specific surface antigen. The “encapsulation” of TTs by a layer of biocompatible polymer should markedly slow the response of the immune system and extend the lifetime of immunotoxin proteins in vivo. It is expected that the masking of the TT surface by the polymer will make the immunotoxin invisible to the immune system. It is also anticipated that the biodegradability of the polymer can be fine-tuned to give a controllable release of the immunotoxin. The goal of this project is to develop an innovative TT protection technique using biodegradable MIPs made by olefin metathesis.

Selected Recent Publications:

  • Preparation of cubic-shaped sorafenib-loaded nanocomposite using well-defined poly (vinyl alcohol alt-propenylene) copolymer, T. Feczkó, G. Merza, G. Babos, B. Varga, E. Gyetvai, L. Trif, E. Kovács, R. Tuba, Int. J. Pharmaceut. https://doi.org/10.1016/j.ijpharm.2019.03.008

  • Polypentenamer-silica composite/Composite de polypenténamère-silice, H.S. Bazzi,  M. Al-Hashimi, R. Tuba, WO/2018/232212

  • One‐pot Synthesis of 1,3‐Butadiene and 1,6‐Hexanediol Derivatives from Cyclopentadiene (CPD) via Tandem Olefin Metathesis Reactions, G. Turczel, E. Kovács, E. Csizmadia, T. Nagy, I. Tóth, R. Tuba, ChemCatChem, 2018, 10 (21) pp 4870-4877

Heterogeneous catalysis

Research topics:

Heterogeneous catalysis for converting bio platform compounds to value-added products: Biomaterials are potential renewable carbon sources for the chemical industry. Broad-scale replacement of fossil carbon is hindered by the absence of efficient technologies for processing biopolymers like proteins or lignocellulosic materials. As a first step, the biopolymers must be depolymerized applying mechanical, chemical, bio- or thermochemical method, or the combination thereof. The main components recovered from the product mixture are the so-called bio platform compounds that must be further processed to get chemicals of better market value. Catalysis is a key technology for biomass conversion and valorization. The research group is studying the heterogeneous catalytic conversion of some important bio platform compounds.

  • Bridge between bio- and chemocatalysis: Sugars are primary products of lignocellulose hydrolysis. Industrial biotechnology converts sugars to bioethanol on the large scale to be used as surrogate fuel or utilized for biodiesel production. The availability of bioethanol as potential raw material of chemical industry is expected to be enhanced as the vegetable oil-based biofuel is phasing out. The research group develops heterogeneous catalytic method for the conversion of bioethanol to biobutanol, which is a better fuel surrogate than the ethanol itself. The production of acetone, butanol, and ethanol mixture (ABE mixture) by sugar fermentation is a traditional process of industrial biotechnology. A possible way of replacing phased-out biodiesel is the conversion of ABE mixture to C5 – C11 alkanes. We study the possibility of converting ABE mixture to diesel fuel by heterogeneous catalytic methods.
  • Levulinic acid and γ-valerolactone: It has been demonstrated that levulinic acid can be obtained with high yield by chemical conversion of the sugar polymer cellulose and hemicellulose, components of lignocellulose. The potential for levulinic acid to become platform compound for the chemical industry is increasing as its production and processing technologies develop. The research group is studying the methods of continuous heterogeneous catalytic conversion of the acid to value-added products. Catalytic hydrodeoxygenation is providing products of increased calorific value, such as, γ-valerolactone 2‑methyl tetrahydrofuran, valeric acid, alcohols, olefins and alkanes. Development of stable catalyst having high activity and selectivity is a real challenge for research.
  • Lignin, the renewable source of aromatics: The success of the biorefinery concept depends on the effective utilization of the lignin fraction of lignocellulose as carbon source. Lignin is a complex three-dimensional amorphous polymer consisting of methoxylated phenylpropanoid units of various types. Preferably, the lignin is first recovered from the lignocellulose and then it is depolymerized using chemical or thermochemical methods. Because of their importance, much research effort was focused on these process steps. Less attention was paid to the conversion of the obtained monomers, such as guaiacol, syringol, eugenol, catechol and coniferyl alcohol, to value-added products. Production of liquid fuels or chemicals from these monomers applying heterogeneous catalytic methods is a topic of the research group.
  • Utilization of waste protein: Protein-containing animal by-products, mainly the meat and bone meal (MBM), represent biological hazard for the environment. Pyrolysis of MBM gives a carbonaceous solid (bone char) and a gaseous stream (pyrogas), containing a condensable fraction, the so-called bone-oil. Pyrolysis neutralizes biohazard but the bone-oil, containing malign products, represents a chemical health hazard. The direct combustion of bone-oil as conventional fuel or fuel additive is problematic because of the noxious gas emission. Refining of MBM pyro-oil cannot be economic. We focus on the environmentally friendly utilization of the bone-oil. Catalytic steam reforming of bone oil to synthesis gas (H2+CO) seems to be a good solution.

Heterogeneous catalysis for abatement of gas emissions: Air pollution knows no boundaries and its reduction is of utmost importance. Catalysis is a reliable and cost-effective solution for the treatment of gas emissions. The objective of the research is to develop highly active, selective and cost-effective catalytic system for converting air polluting exhausts containing for instance volatile organic compounds (VOC), carbon monoxide, nitric and nitrous oxides (NOx), particulates, or ozone to harmless non-pollutants at reasonable temperature. Achievement of this objective usually requires either catalytic oxidation or reduction reaction where the pollutant can be either reducing or oxidizing agent. A good example is the three-way catalyst system of cars. The exhaust of the engine contains both reducing (CO, hydrocarbons) and oxidizing (NOx, O2) components. The catalytic reaction of these components is directed to give non-toxic CO2, N2 and H2O. The interest of the research group focuses on the abatement of the VOC and NOx emission from stationary sources.

  • VOC oxidation: For the efficient removal of low concentration VOC emissions catalytic total oxidation is the most promising process, where only CO2 and H2O is produced. Many efforts being paid to the development of transition metal oxide based catalysts in order to replace noble metal catalysts. The research group is studying toluene oxidation by micelle templated silica based catalysts modified by iron, copper, cobalt, nickel etc. oxide nanoparticles confined in the silica nanopores. Bimetallic formulations are proved to be more active and thermally stable catalysts than monometallic ones.
  • NOx selective catalytic reduction (SCR): Nitrogen oxides emitted from stationary combustion sources are presently removed by selective catalytic reduction (SCR) using ammonia as reducing agent and V2O5/TiO2 based catalysts. The present technology suffers from severe drawbacks, such as the corrosiveness, toxicity, and relatively high cost of the reducing agent and the risk of ammonia emission. In those power plants where methane is used as fuel the most favorable process would be the SCR of NOx using cheap and abundantly available methane (CH4/NO-SCR) for reducing NOx to N2. However, the activation of the relatively stable methane for the reaction is difficult and also the catalytic selectivity becomes a key issue due to the presence of oxygen in large excess in the emission. Therefore, the development of a catalyst that would meet the requirements for industrial application is a real challenge for research.

Selected Recent Publications:

  • Hydroconversion mechanism of biomass-derived γ-valerolactone, G. Novodárszki, H. E Solt, G. Lendvay, R. M. Mihályi, A. Vikár, F.erenc Lónyi, J. Hancsók, J. Valyon, Catal. Today, https://doi.org/10.1016/j.cattod.2019.02.020

Figure

  • Guerbet alkylation of acetone by ethanol and reduction of product alkylate to alkane over tandem nickel/Mg,Al-hydrotalcite and nickel molybdate/γ-alumina catalyst systems, G. Novodárszki, G. Onyestyák, R. Barthos, Á.F. Wellisch, A.J. Thakur, D. Deka, J.Valyon, Reac Kinet Mech Cat (2017) 121: 69

  • Synthesis and characterization of Al-magadiite and its catalytic behavior in 1,4-pentanediol dehydration, G. Novodárszki, J. Valyon, Á. Illés, S. Dóbé, M.R. Mihályi, Reac Kinet Mech Cat (2017) 121: 275. 

  • Heterogeneous hydroconversion of levulinic acid over silica-supported Ni catalyst, G. Novodárszki, J. Valyon, Á. Illés, S. Dóbé, D. Deka, J. Hancsók, M.R. Mihályi, https://doi.org/10.1007/s11144-018-1507-9

Theoretical chemical calculations

Experimental studies in the group are also supported by the use of theoretical methods. We investigate the mechanisms, kinetics and dynamics of chemical reactions, as well as the structure, photophysical and photochemical properties of the transition metal complexes and the mechanism of their catalyzed reactions. In theoretical studies quantum chemistry methods are used to determine the structure and physical properties of the molecules and to calculate the potential energy surfaces of the experimentally investigated reactions. We reveal the mechanism of reactions and calculate their reaction kinetic and dynamic parameters using their own methods. Similar theoretical methods help to understand the mechanism of catalytic processes and to develop optimal catalysts.

Members

]]>
Polymer Chemistry Research Group http://www.ttk.hu/aki/en/polymer-chemistry-research-group/ Mon, 09 Apr 2018 18:37:18 +0000 http://www.ttk.hu/aki/polimer-kemiai-kutatocsoport/ Research interest

The primary field of research is focused on the study of special polymer structures and state-of-the-art polymerisation techniques. Research activity at the department involves both applied and basic research, often in cooperation with several industrial partners including some multinational firms.

Current research projects

Novel Functional Polymers

Application of Quasiliving Radical Polymerization

Nanostructured Amphiphilic Conetworks

Environmentally Friendly Degradation and Transformations of PVC

Polymers of Novel Molecular Composition and Topology

Quasiliving Carbocationic Polymerization

Equipment

Waters 510 GPC, gel permeation chromatograph (Waters 515 HPLC pump, in-line Degasser, Waters 717plus autosampler, Polymer Laboratories column system (PL-Mixed C), Viscotek dual detector (differential refractometer and differential viskometer), Wyatt MiniDawn multiangle light scattering detector, Wyatt Optilab DSP interferometric refractometer, Waters 440 Absorbance UV detector, Trisec GPC 3.01 software)

PVC degradation apparatus (Metrohm, 763 PVC Thermomat apparatus, “963 PVC Thermomat” evaluating program)

Laboratory ozoniser (OzoneLab, OL80W type; accessories: ozone flow meter (FM500), flow rate: 31 – 1000 ml/min)

Photopolymerization equipment (DYMAX 5000-PC type)

Laboratory centrifugal apparatus (Hermle)

For additional information see THE HOMEPAGE OF THE GROUP

Leader

Béla Iván

Members

]]>
Polymer Physics Research Group http://www.ttk.hu/aki/en/polymer-physics-research-group/ Mon, 09 Apr 2018 18:36:46 +0000 http://www.ttk.hu/aki/polimer-fizikai-kutatocsoport/ Research interest

Structure-property correlations in polymers and multicomponent polymer systems; interfacial phenomena in heterogeneous polymers (blends, particulate filled and fibre reinforced composites); transport phenomena in polymers; degradation and stabilization of polyolefins; reactive processing of polymers

Current research projects

  • Correlations among the chemical reactions taking place during the melt processing of HDPE, the resulting chain structure of the polymer and the properties of the final product (film)
  • Study and modification of interfacial interactions in carbon fibre reinforced polymer composites
  • Study of miscibility/structure/property correlations in polymer blends
  • Preparation and study of layered silicate nanocomposites
  • Preparation of biologically degradable polymers from naturally occurring raw materials, characterization of their structure and properties

Publications

International cooperation

  • Clariant SA, France, degradation and stabilization of polyolefins
  • Sasol Industrial Ltd., South Africa , melting and crystallization of polypropylene
  • Lund University of Technology, Sweden, multicomponent polymers
  • Twente University , The Netherlands , structure-property correlations in crystalline polymers

Educational activities

  • Joint research laboratory with the Budapest University of Technology and Economics
  • Teaching of polymer chemistry, physics, processing and application to graduate students (courses, lab. practice, theses, etc.)
  • Post graduate special engineering course on polymer processing and application
  • Post graduate short courses on various topics (identification of plastics, FTIR for plastics, mechanical properties, injection moulding, extrusion, fracture, etc.)

Leader

János Móczó

Members

]]>
Plasma Chemistry Research Group http://www.ttk.hu/aki/en/plasma-chemistry-research-group/ Mon, 09 Apr 2018 18:36:22 +0000 http://www.ttk.hu/aki/plazmakemiai-kutatocsoport/ The main research field of the research group comprises the investigation and development of advanced functional and structural materials and material systems. We study the correlations among chemical composition, microstructure, properties as well as processing of structural and functional materials. We direct special interest to the synthesis, properties and applications of nanodispersed systems, nanocomposites, functional nanoparticles , core-shell structured particles, nanotubes and microspheres. In addition to conventional chemical preparative methods, novel plasma chemical techniques for material synthesis are also intensively studied .

Our research is also aiming at revealing the correlation between surface properties and chemical composition of condensed materials. We investigate the modification of surface properties of organic and inorganic substrates by modifying the surface chemical structure using various plasmachemical methods (magnetron spraying, PIII and FAB surface treatments) as well as by preparing micro and nanolayers (plasma spraying).

Beyond material synthesis, we also study the possible role of plasma chemistry and thermal plasmas in environmental protection. We study thermal plasma processing for destruction and reutilization of environmentally hazardous wastes and industrial by-products. We also contribute to the implementation of waste processing plasma-based plants.

Leader

Zoltán Károly

Members

]]>
Artificial Transporters Research Group http://www.ttk.hu/aki/en/artificial-transporters-research-group/ Mon, 09 Apr 2018 18:35:53 +0000 http://www.ttk.hu/aki/mesterseges-transzporterek-lendulet-kutatocsoport/ We attend to create a future molecular scaffold, with which highly efficient and selective chloride ion transportation will be feasible. Supramolecular chemistry derived polyamide protein mimetics were developed with various structural and functional properties. However, such construct were not used for the transportation of ions through membranes. We aim to design and synthetize artificial proteomimetic chloride ion transporters. Design of supramolecular artificial transporter constructs is expected to deepen our understanding of the fundamental insight into unnatural transporter assemblies. From a practical perspective, we aim to arrive to a general molecular scaffold possessing specific chloride ion transportation activity, which can later be further developed to maximize its efficiency in various diseases like cystic fibrosis, or can be utilized in oncology or central nervous system therapy. Such systems might have strong drug development potential.

The alteration of the chloride ion transportation by artificial (membrane inserted) transporter can give further insight into the ion balance of various cells. It may provide further understandings into the pathomechanism and potential treatment of cystic fibrosis and into some oncological and neurobiological cases.

Leader

István Mándity

Members

]]>
Renewable Energy Research Group http://www.ttk.hu/aki/en/renewable-energy-research-group/ Mon, 09 Apr 2018 18:35:27 +0000 http://www.ttk.hu/aki/megujulo-energia-kutatocsoport/ Introduction, main research areas

The mission of the Renewable Energy Research Group is to mitigate the penetration of renewables by efficient scientific work. Research is conducted in order to understand the fundamental principles governing the conversion of renewable energy in thermal, photo- and electrochemical reactions. Our aim is to understand the reactions related to these compounds and to design novel heterogeneous catalysts for these processes. Several unique techniques are applied for our efficient research activity, such as combinatory and high throughput techniques.

Combinatory and High-throughput Techniques – Time- and Cost-efficient Research

Application of combinatorial methods means a special design of experiments for optimization purpose in practice. All the experimental variables are changed simultaneously, leading to design a large number of experiments to be accomplished in parallel by High-throughput Experimental Techniques. In order to reduce the number of experiments, different statistical and data mining tools are applied to reveal cross-effects between the different modifiers and correlations between composition and catalytic results. Our laboratory is equipped with devices in which we are able to prepare and characterize 16 samples simultaneously, such as a 16-channel tubular reactor system or a microwave oven with 16 autoclaves.

Fuel Cells  –  Clean Energy Production

The decades of research activity in the fields of catalysis and material science provide a firm scientific ground to develop novel fuel cell electrocatalysts. The most compelling practical needs of the real-life application, namely reducing the price and increasing the durability are approached by using novel nanomaterials, such as electro conductive mixed oxides or several carbonaceous materials (graphenes, carbon nanotubes and mesoporous carbons). The research and development are supported by a wide range of state of art experimental devices to characterize the structure and catalytic performance of the systems. One of our greatest strengths is the use of high-throughput methods and customized, individualistic solutions for effective and successful research and development.

Pyrolysis – Waste Management

The pyrolysis of biomass and waste plastics is a promising way of environmental-friendly upgrading of solid wastes to gain valuable products such as feedstocks or fuels. During decades of research activity the thermal properties and pyrolysis processes of biomass, synthetic polymers and plastics have been studied in details in our laboratory. Our research activities focus mainly on the thermal and thermocatalytic decomposition of macromolecules, on the reactions taking place during pretreatment processes (such as torrefaction), moreover on the upgrading of pyrolysis oils over solid catalysts.

Energy storage – Organic redox-flow batteries

Because of the high cost of storing electricity, the quantity of stored energy is pretty low in the grid. Because the storing of electricity is impossible, grid balancing is made by the production units resulting continuous efficiency loss. Penetration of renewables because of their intermittency is limited without storage. It is needed that the price level of electricity storage drop to an acceptable level.

The greatest advantage of redox-flow batteries is, that the rated power and the energy storing capacity can be adjusted independently, resulting the best setup for the given application. Our research focuses to investigate compounds, which can be potential electrolyte in a redox-flow battery.

Pulications

2013

  • Szijjártó GP, Pászti Z, Sajó I, Erdőhelyi A, Radnóczi G, Tompos A: Nature of the active sites in Ni/MgAl2O4-based catalysts designed for steam reforming of ethanol. JOURNAL OF CATALYSIS 305: pp. 290-306. (2013) IF: 6.073
  • Blazsó M, Bozi J: Ammonium Y zeolite applied as a thermochemolysis reagent for identification of polyethers and polyesters. JOURNAL OF CHROMATOGRAPHY A 1271: pp. 217-220. (2013) IF: 4.258
  • Majrik K, Tálas E, Pászti Z, Sajó I, Mihály J, Korecz L, Drotár E, Tompos A: Enhanced activity of sol-gel prepared SnOx-TiO2 in photocatalytic methanol reforming. APPLIED CATALYSIS A-GENERAL 466: pp. 169-178. (2013) IF: 674
  • Firkala T, Tálas E, Mihály J, Imre T, Kristyán S: Specific behavior of the p-aminothiophenol – Silver sol system in their Ultra-Violet-Visible (UV-Visible) and Surface Enhanced Raman (SERS) spectra. JOURNAL OF COLLOID AND INTERFACE SCIENCE 410: pp. 59-66. (2013) IF: 3.552
  • Keresztes S, Tatár E, Czégény Zs, Záray G, Mihucz VG: Study on the leaching of phthalates from polyethylene terephthalate bottles into mineral water. SCIENCE OF THE TOTAL ENVIRONMENT 458-460: pp. 451-458. (2013) IF: 3.163
  • Bozi J, Mihályi MR, Blazsó M: Study on temperature dependence of catalytic thermal decomposition of polyamides and polyurethanes mixed with acidic zeolites, JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 101: pp. 103-110. (2013) IF: 3.070
  • Sebestyén Z, Jakab E, May Z, Sipos B, Réczey K: Thermal behavior of native, washed and steam exploded lignocellulosic biomass samples. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 101: pp. 61-71. (2013) IF: 3.070
  • Czégény Z, Jakab E, Blazsó M: Pyrolysis of wood, cellulose, lignin–brominated epoxy oligomer flame retardant mixtures. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 103: pp. 52-59. (2013) IF: 3.070
  • Dobele G, Jakab E, Volperts A, Sebestyén Z, Zhurins A, Telysheva G: Formation of nanoporous carbon materials in conditions of thermocatalytic synthesis. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 103: pp. 173-180. (2013) IF: 3.070
  • Legarra M, Blitz A, Czégény Zs, Antal MJ Jr: Aqueous potassium bicarbonate/carbonate ionic equilibria at elevated pressures and temperatures. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH 52: pp. 13241-13251. (2013) IF: 2.235
  • Borbáth I, Gubán D, Pászti Z, Sajó IE, Drotár E, de la Fuente JLG Herranz T Rojas S Tompos A: Controlled synthesis of Pt3Sn/C electrocatalysts with exclusive Sn-Pt interaction designed for use in direct methanol fuel cells. TOPICS IN CATALYSIS 56: pp. 1033-1046. (2013) IF: 2.220
  • Fazekas P, Bódis E, Keszler AM, Czégény Zs, Klébert Sz, Károly Z, Szépvölgyi J: Decomposition of Chlorobenzene by Thermal Plasma Processing. PLASMA CHEMISTRY AND PLASMA PROCESSING 33 (4): pp. 765-778. (2013) IF: 1.599
  • Gergely A, Pászti Z, Bertóti I, Török T, Pfeifer É, Kálmán E: Novel zinc-rich epoxy paint coatings with hydrated alumina and carbon nanotubes supported polypyrrole for corrosion protection of low carbon steel. Part I: Inhibitor particles and their dispersions. MATERIALS AND CORROSION 64: pp. 1082-1090. (2013) IF: 1.508
  • Gergely A, Pászti Z, Bertóti I, Török T, Mihály J, Kálmán E: Novel zinc-rich epoxy paint coatings with hydrated alumina and carbon nanotubes supported polypyrrole for corrosion protection of low carbon steel. Part II: Corrosion prevention behaviour of the hybrid paint coatings. MATERIALS AND CORROSION 64: pp. 1091-1103. (2013) IF: 1.508
  • Gergely A, Pászti Z, Hakkel O, Bertóti I, Mihály J, Török T: Polipirrollal módosított szén nanocső/aluminium-oxid-monohidrát alapú cinkdús hibrid festékalapozók vizsgálata. KORRÓZIÓS FIGYELŐ 53 (1): pp. 3-25. (2013) IF: 0.143
  • Gergely A, Török T, Pászti Z, Bertóti I, Mihály J, Kálmán E: Zinc-rich paint coatings containing either ionic surfactant-modified or functionalized multi-walled carbon nanotube-supported polypyrrole utilized to protect cold-rolled steel against corrosion. In: Ajay Kumar Mishra (ed.): Application of Carbon Nanotubes, ch. 10, pp. 211-258, Nova Publishers, 2013

2014

  • Lónyi F, Solt HE, Pászti Z, Valyon J: Mechanism of NO-SCR by methane over Co,H-ZSM-5 and Co,H-mordenite catalysts. APPLIED CATALYSIS B: ENVIRONMENTAL 150-151: pp. 218-229. (2014) IF: 7.435
  • Mestl G, Margitfalvi JL, Végvári L, Szijjártó GP, Tompos A: Combinatorial design and preparation of transition metal doped MoVTe catalysts for oxidation of propane to acrylic acid. APPLIED CATALYSIS A-GENERAL 474: pp. 3-9. (2014) IF: 942
  • Margitfalvi JL, Tálas E: Enantioselective hydrogenation of activated ketones in the presence of Pt-Cinchona catalysts. Is the proton transfer concept valid? CATALYSIS COMMUNICATION 46: pp. 142-145. (2014) IF: 699
  • Kertész K, Piszter G, Jakab E, Bálint Zs, Vértesy Z, Biró LP: Temperature and saturation dependence in the vapor sensing of butterfly wing scales. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS 39 (1): pp. 221-226. (2014) IF: 3.088
  • Gergely A, Pászti Z, Mihály J, Drotár E, Török T: Galvanic function of zinc-rich coatings facilitated by percolating structure of the carbon nanotubes: Part II: Protection properties and mechanism of the hybrid coatings. PROGRESS IN ORGANIC COATINGS 77: pp. 412-424. (2014) IF: 2.358
  • Firkala T, Fórizs B, Drotár E, Tompos A, Tóth AL, Varga-Josepovits K, László K, Leskelä M, Szilágyi IM: Influence of the support crystal structure of WO3/Au catalysts in CO oxidation. CATALYSIS LETTERS 144 (5): pp. 831-836. (2014) IF: 2.307
  • Graczer E, Bacso A, Konya D, Kazi A, Soos T, Molnar L, Szimler T, Beinrohr L, Szilagyi A, Zavodszky P, Vas M: Drugs Against Mycobacterium Tuberculosis 3-Isopropylmalate Dehydrogenase Can be Developed using Homologous Enzymes as Surrogate Targets. PROTEIN AND PEPTIDE LETTERS 21:(12) pp. 1295-1307. (2014) IF: 1.068
  • Vass Á, Tálas E, Pászti Z, Szijjártó G, Veres M, Tompos A: Új típusú Pt-GaN/ZnO fotokatalizátorok előállítása és vizsgálata. In: Bohner B, Endrődi B (szerk.) XXXVII. Kémiai Előadói Napok. 238 p.Konferencia helye, ideje: Szeged, Magyarország, 2014.11.03-2014.11.05. Budapest; Szeged: Magyar Kémikusok Egyesülete, pp. 87-91.
    (ISBN:978-963-9970-53-3)
  • Gubán D, Borbáth I, Pászti Z, Sajó I, Drotár E, Tompos A: Anódoldali elektrokatalizátor fejlesztése hidrogén-üzemű PEM tüzelőanyag-cellákhoz. In: Bohner B., Endrődi B. (szerk.) XXXVII. Kémiai Előadói Napok. 238 p. Konferencia helye, ideje: Szeged, Magyarország, 2014.11.03-2014.11.05. Budapest; Szeged: Magyar Kémikusok Egyesülete, 2014. 80-84.
    (ISBN:978-963-9970-53-3)
  • Gergely A, Pászti Z, Bertóti I, Mihály J, Drotár E, Török T: Hybrid Zinc-rich paint coatings: The impact of incorporation of nano-size inhibitor and electrical conducting particles. In: A. Tiwari, J. W. Rawlins, L. H. Hihara (eds.): Intelligent coatings for corrosion control, pp. 195-249, Elsevier, 2014 (ISBN: 978-012411534-7)
  • Piszter G, Kertész K, Vértesy Z, Biró LP, Bálint Z, Jakab E: Lepkeszárnyak fotonikus nanoarchitektúráinak gáz- és gôzérzékelési tulajdonságai. FIZIKAI SZEMLE 64 (4): pp. 120-125. (2014)
  • Kertész K, Piszter G, Baji Zs, Jakab E, Bálint Zs, Vértesy Z, Biró LP: Vapor sensing on bare and modified blue butterfly wing scales. CHEMICAL SENSORS 4 (17): Paper 17. 5 pages (2014)

2015

  • Jakab E: Analytical Techniques as a Tool to Understand the Reaction Mechanism. Chapter 3 in „Recent Advances in Thermo-chemical Conversion of Biomass (Eds. A. Pandey, T. Bhaskar, M. Stocker & R. Kumar Sukumaran) Elsevier, 2015, pp. 73-106.
  • Gubán D, Borbáth I, Pászti Z, Sajó IE, Drotár E, Hegedűs M, Tompos A: Preparation and characterization of novel Ti7W0.3O2-C composite materials for Pt-based anode electrocatalysts with enhanced CO tolerance. APPLIED CATALYSIS B: ENVIRONMENTAL 174: pp. 455-470. (2015) IF: 8.328
  • Naszályi Nagy L, Mihály J, Polyák A, Debreczeni B, Császár B, Szigyártó I Cs, Wacha A, Czégény Zs, Jakab E, Klébert Sz, Drotár E, Dabasi G, Bóta A, Balogh L, Kiss E: Inherently fluorescent and porous zirconia colloids: preparation, characterization and drug adsorption studies. JOURNAL OF MATERIALS CHEMISTRY B 3 (38): pp. 7529-7537. (2015) IF: 4.872
  • Sebestyén Z, Czégény Zs, Badea E, Carsote C, Şendrea C, Barta-Rajnai E, Bozi J, Miu L, Jakab E: Thermal characterization of new, artificially aged and historical leather and parchment. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 115: pp. 419-427. (2015) IF: 3.652
  • Czégény Zs, Jakab E, Bozi J, Blazsó M: Pyrolysis of wood-PVC mixtures. Formation of chloromethane from lignocellulosic materials in the presence of PVC. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 113: pp. 123-132. (2015) IF: 3.652
  • Szentannai P, Bozi J, Jakab E, Ősz J, Szűcs T: Towards the thermal utilisation of non-tyre rubbers – Macroscopic and chemical changes while approaching the process temperature. FUEL 156: pp. 148-157. (2015) IF: 3.52
  • Firkala T, Tálas E, Kristyán S,·Szöllősi Gy, Drotár E, Mink J, Mihály J: Surface enhanced Raman spectroscopic (SERS) behavior of substituted propenoic acids used in heterogeneous catalytic asymmetric hydrogenation. JOURNAL OF RAMAN SPECTROSCOPY 46: 1102-1109. (2015) IF: 2.395
  • Gergely A, Pászti Z, Mihály J, Drotár E, Török T: Galvanic function of zinc-rich coatings facilitated by percolating structure of the carbon nanotubes. Part I: Characterization of the nano-size particles. PROGRESS IN ORGANIC COATINGS 78: pp. 437-445. (2015) IF: 358
  • Nemeth K, Jakab E, Borondics F, Tóháti HM, Pekker Á, Bokor M, Verebélyi T, Tompa K, Pekker S, Kamarás K: Breakdown of diameter selectivity in a reductive hydrogenation reaction of single-walled carbon nanotubes. CHEMICAL PHYSICS LETTERS 618 (2): pp. 214-218. (2015) IF: 1.860
  • Tálas E, Szíjjártó GP, Tompos A: Hydroamination reactions of dialkyl esters of 2-buthenedioic acids with polyetheramines under catalytic and non-catalytic conditions. REACTION KINETICS MECHANISMS AND CATALYSIS 115: pp. 431-447. (2015) IF: 1.265
  • Bortel G, Kováts E, Jakab E, Pekker S: Solvent-free Sc3N@C80-Ih and its precursor cocrystal with toluene. FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES 23 (6): pp. 557-565. (2015) IF: 812
  • Borbáth I, Pászti Z, Gubán D, Vass Á, Tompos A: CO toleráns anódoldali elektrokatalizátorok fejlesztése PEM tüzelőanyag-cellákhoz. MAGYAR KÉMIAI FOLYÓIRAT – KÉMIAI KÖZLEMÉNYEK 121 (2-3): pp. 80-88. (2015)
  • Vass Á, Pászti Z, Tálas E, Bálint Sz, Németh P, Tompos A: Ga2O3 katalizátorok szerkezeti átalakulása fotokatalitikus metanol reformálás alatt. In: Bohner B, Mesterházy E (szerk.) XXXVIII. KÉMIAI ELŐADÓI NAPOK: Program és előadás-összefoglalók. Konferencia helye, ideje: Szeged, Magyarország, 2015.10.26-2015.10.28. Szeged:Magyar Kémikusok Egyesülete, pp. 134-138. (ISBN:978-963-9970-64-9)
  • Gubán D, Borbáth I, Pászti Z, Bálint Sz, Németh P, Gajdos G, Tompos A: Irányított felületi reakciók alkalmazása CO-toleráns anódoldali elektrokatalizátorainak fejlesztéséhez. In: Bohner B., Mesterházy E. (szerk.) XXXVIII. Kémiai Előadói Napok. Konferencia helye, ideje: Szeged, Magyarország, 2015. október 26-28. Budapest; Szeged: Magyar Kémikusok Egyesülete, 2015. 129-133. (ISBN:978-963-9970-64-9)

2016

  • Fazekas P, Czégény Zs, Mink J, Bódis E, Klébert S, Németh C, Keszler AM, Károly Z, Szépvölgyi J: Decomposition of poly(vinyl chloride) in inductively coupled radiofrequency thermal plasma. CHEMICAL ENGINEERING JOURNAL 302: pp. 163-171. (2016) IF: 6.216
  • Naszályi Nagy L, Polyák A, Mihály J, Szécsényi Á, Szigyártó ICs, Czégény Zs, Jakab E, Németh P, Magda B, Szabó PT, Veres Zs, Jemnitz K, Bertóti I, Jóba RP, Trencsényi Gy, Balogh L, Bóta A: Silica@zirconia@poly(malic acid) nanoparticles: promising nanocarriers for theranostic applications. JOURNAL OF MATERIALS CHEMISTRY B 4: pp. 4420-4429. (2016) IF: 4.543
  • Wedege K, Dražević E, Konya D, Bentien A: Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility. SCIENTIFIC REPORTS 6: Paper 39101. (2016) IF: 4.259
  • Czégény Zs, Bozi J, Sebestyén Z, Blazsó M, Jakab E, Barta-Rajnai E, Forster M, Nicol J, McAdam KG, Liu C: Thermal behaviour of selected flavour ingredients and additives under simulated cigarette combustion and tobacco heating conditions. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 121: pp. 190-204. (2016) IF: 3.471
  • Barta-Rajnai E, Jakab E, Sebestyén Z, May Z, Barta Zs, Wang L, Skreiberg Ø, Grønli M, Bozi J, Czégény Zs: Comprehensive compositional study of torrefied wood and herbaceous materials by chemical analysis and thermoanalytical methods. ENERGY & FUELS 30 (10): pp. 8019-8030. (2016) IF: 3.091
  • Sebestyén Z, Barta-Rajnai E, Czégény Zs, Bhaskar T, Krishna B, May Z, Bozi J, Barta Z, Singh R, Jakab E: Thermoanalytical Characterization and Catalytic Conversion of Deoiled Micro Algae and Jatropha Seed Cake. ENERGY & FUELS 30 (10): pp. 7982-7993. (2016) IF: 3.091
  • Vass Á, Paszti Z, Bálint Sz, Németh P, Szijjárto GP, Tompos A, Tálas E: Structrural evolution in Pt/Ga-Zn-oxynitride catalysts for photocatalytic reforming of methanol. Materials Research Bulletin 83: pp. 65-76. (2016) IF: 446
  • Gubán D, Pászti Z, Borbáth I, Bakos I, Drotár E, Sajó IE, Tompos A: Design and preparation of CO tolerant anode electrocatalysts for PEM fuel cells. PERIODICA POLYTECHNICA- CHEMICAL ENGINERING 60: pp. 23-29. (2016) IF: 0.557
  • Gubán D, Tompos A, Bakos I, Pászti Z, Gajdos G, Vass Á, Borbáth I: Irányított feületi reakciók alkalmazása PEM Tüzelőanyag-elem katalizátorok előállítására. In: Bohner B, Ádám A, Tímár Z, Ziegenheim Sz (szerk.) XXXIX. Kémiai Előadói Napok. Konferencia helye, ideje: Szeged, Magyarország, 2016. október 17-19. Budapest; Szeged: Magyar Kémikusok Egyesülete, 2016. pp. 90-94. (ISBN: 978-963-9970-73-1)
  • Vass Á, Tompos A, Bakos I, Pászti Z, Szabó E, Sajó I, Borbáth I: CO-toleráns elektrokatalizátorok előállítása és vizsgálata. In: Bohner B, Ádám A, Tímár Z, Ziegenheim Sz (szerk.) XXXIX. Kémiai Előadói Napok. Konferencia helye, ideje: Szeged, Magyarország, 2016. október 17-19. Budapest; Szeged: Magyar Kémikusok Egyesülete, 2016. pp. 146-150.
    (ISBN: 978-963-9970-73-1)
  • Majrik K, Mihály J, Pászti Z, Tompos A, Tálas E: Pt-SnOx/TiO2 fotokatalizátorok előállítása és jellemzése. In: Bohner B, Ádám A, Timár Z, Ziegenheim Sz (szerk.) XXXIX Kémiai Előadói Napok. Konferencia helye, ideje: Szeged, Magyarország, 2016. október 17-19. Budapest; Szeged: Magyar Kémikusok Egyesülete, 2016. pp. 85-89.

(ISBN: 978-963-9970-73-1)

  • Vass Á, Korhammer K, Mihály J, Trif L, Tompos A, Tálas E: Kalcium klorid-, magnézium klorid – alkohol rendszerek alkalmazása hőtárolásra szolgáló reverzibilis szolvát képzési reakciókban. In: Bohner B, Ádám A, Timár Z, Ziegenheim Sz (szerk.) XXXIX Kémiai Előadói Napok. Konferencia helye, ideje: Szeged, Magyarország, 2016.október 17-19. Budapest; Szeged: Magyar Kémikusok Egyesülete, 2016. pp. 141-145.

(ISBN: 978-963-9970-73-1)

  • Bozi J, Bakos G, Czégény Z, May Z, Jakab E, Bálint S, Blazsó M: Autó motorteréből származó gumicsövek termikus tulajdonságai és összetétele. MŰANYAG- ÉS GUMIIPARI ÉVKÖNYV: pp. 78-85. (2016) (ISSN: 1589-6268)

2017

  • Pálmai M, Zahran E. M, Angaramo S, Bálint Sz, Pászti Z, Knecht M, Bachas L. G: Pd-decorated m-BiVO4/BiOBr ternary composite with dual heterojunction for enhanced photocatalytic activity. JOURNAL OF MATERIALS CHEMISTRY A 5: pp. 529-534. (2017) IF (2016): 8.26
  • Sebestyén Z, Barta-Rajnai E, Bozi J, Blazsó M, Jakab E, Miskolczi N, Sója J, Czégény Zs: Thermo-catalytic pyrolysis of biomass and plastic mixtures using HZSM-5. APPLIED ENERGY 207: pp. 114-122. (2017) IF: 7.182
  • Barta-Rajnai E, Wang L, Sebestyén Z, Barta Z, Khalil R, Skreiberg Ø, Grønli M, Jakab E, Czégény Zs: Comparative study on the thermal behavior of untreated and varioustorrefied bark, stem wood, and stump of Norway spruce. APPLIED ENERGY 204: pp. 1043-1054. (2017) IF: 7.182
  • Barthos R, Hegyessy A, Novodárszki Gy, Pászti Z, Valyon J: Structure and activity of Pd/V2O5/TiO2 catalysts in Wacker oxidation of ethylene. APPLIED CATALYSIS A-GENERAL 531: pp. 96-105. (2017) IF (2016): 4.01
  • Gubán D, Tompos A, Bakos I, Vass Á, Pászti Z, Szabó EGy, Sajó IE, Borbáth I: Preparation of CO-tolerant anode electrocatalysts for polymer electrolyte membrane fuel cells. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 42: pp. 13741-13753. (2017) IF (2016): 3.582
  • Barta-Rajnai E, Várhegyi G, Wang L, Skreiberg Ø, Grønli M, Czégény Zs: Thermal Decomposition Kinetics of Wood and Bark and Their Torrefied Products. ENERGY AND FUELS 31: pp. 4024-4034 (2017) IF: 3.091
  • Vass Á, Pászti Z, Bálint Sz, Németh P, Tompos A, Tálas E: Structural transformation of Ga2O3-based catalysts during photoinduced reforming of methanol. Materials Research Bulletin 95: pp. 71-78. (2017) IF (2016): 446
  • Beck TM, Bertóti I, Mohai M, Németh P, Jakab E, Szabó L, Szépvölgyi J: Gold nano-particle formation from crystalline AuCN: Comparison of thermal, plasma- and ion-activated decomposition. JOURNAL OF SOLID STATE CHEMISTRY 246: pp. 65-74. (2017) IF: 2.299
  • Gubán D, Tompos A, Bakos I, Pászti Z, Gajdos G, Sajó IE, Borbáth I: CO oxidation and oxygen reduction activity of bimetallic Sn-Pt electrocatalysts on carbon: effect of the microstructure and the exclusive formation of the Pt3Sn alloy. REACTION KINETICS MECHANISMS AND CATALYSIS 121: 43-67. (2017) IF (2016): 1.264
  • Vass Á, Borbáth I, Pászti Z, Bakos I, Sajó IE, Németh P, Tompos A: Effect of Mo incorporation on electrocatalytic performance of Ti-Mo mixed oxide-carbon composite supported Pt electrocatalysts. REACTION KINETICS MECHANISMS AND CATALYSIS 121: pp. 141-160. (2017) IF(2016): 1.264
  • Barta-Rajnai E, Wang L, Sebestyén Z, Bartad Zs, Khalil R, Skreiberg Ø, Grønli M, Jakab E, Czégény Zs: Effect of Temperature and Duration of Torrefaction on the Thermal Behavior of Stem Wood, Bark, and Stump of Spruce. ENERGY PROCEDIA 105: pp. 551-556. (2017) (ISSN: 1876-6102)
  • Sebestyén Z, Miskolczi N, Barta-Rajnai E, Jakab E, Czégény Zs: Thermocatalytic studies on municipal solid waste. ENERGY PROCEDIA 105: pp. 706-711. (2017) (ISSN: 1876-6102)
  • Wang L, Barta-Rajnai E, Skreiberg Ø, Khalil R, Czégény Zs, Jakab E, Barta Z, Grønli M: Impact of torrefaction on woody biomass properties. ENERGY PROCEDIA 105: pp. 1149-1154. (2017) (ISSN: 1876-6102)
  • Wang L, Barta-Rajnai E, Hu K, Higashi C, Skreiberg Ø, Grønli M, Czégény Zs, Jakab E, Myrvågnese V, Várhegyi G, Antal MJ, Jr: Biomass Charcoal Properties Changes during Storage. ENERGY PROCEDIA 105: pp. 830-835. (2017) (ISSN: 1876-6102)
  • Vass Á, Borbáth I, Bakos I, Pászti Z, Tompos A: Ti-Mo vegyes-oxid-szén kompozit hordozós Pt elektrokatalizátor CO-toleráns viselkedésének vizsgálata. In: Ádám AA, Tímár Z, Ziegenheim Sz (szerk.) XL. Kémiai Előadói Napok. Konferencia helye, ideje: Szeged, Magyarország, 2017. október 16-18. Budapest; Szeged: Magyar Kémikusok Egyesülete, 2017. pp. 231-235. (ISBN: 978-963-9970-83-0)

2018

  • Wang, E. Barta-Rajnai, Ø. Skreiberg, R. Khalil, Z. Czégény, E. Jakab, Z. Barta, M. Grønli: Effect of torrefaction on physiochemical characteristics and grindabilityof stem wood, stump and bark. APPLIED ENERGY: in press. (2018) (DOI: 10.1016/j.apenergy.2017.07.024) IF (2017): 7.182
  • Borbath I, Guban D, Bakos I, Paszti Z, Gajdos G, Sajo IE, Vass Á, Tompos A: Exclusive formation of alloy phases via anchoring technique – From bimetallic catalysts to electrocatalysis. CATALYSIS TODAY 306: pp. 58-70. (2018) IF (2017): 4.636
  • Tálas E, Pászti Z, Korecz L, Domján A, Németh P, Szíjjártó G. P, Mihály J, Tompos A: PtOx-SnOx-TiO2 catalyst system for methanol photocatalytic reforming: influence of cocatalysts on the hydrogen production. CATALYSIS TODAY 306: pp. 71-80. (2018) IF (2017): 4.636
  • Pászti Z, Hakkel O, Szíjjártó G. P, Tompos A: Adsorption and transformations of ethanol over ceria based model catalysts. CATALYSIS TODAY 306: pp. 145-153. (2018) IF (2017): 4.636
  • Majrik K, Turcsányi Á, Pászti Z, Szabó T, Domján A, Mihály J, Tompos A, Dékány I, Tálas E: Graphite oxide-TiO2 nanocomposite type photocatalyst for methanol photocatalytic reforming reaction. TOPICS IN CATALYSIS: in press. (2018) (DOI: 10.1007/s11244-018-0989-z) IF (2017): 2.486
  • Vass Á, Borbáth I, Bakos, Pászti Z, Sajó IE, Tompos A: Novel Pt electrocatalysts: multifunctional composite supports for enhanced corrosion resistance and improved CO tolerance. TOPICS IN CATALYSIS: in press. (2018) (DOI: 10.1007/s11244-018-0988-0) IF (2017): 2.486
  • Fazekas P, Czégény Zs, Mink J, Szabó PT, Keszler AM, Bódis E, Klébert Sz, Szépvölgyi J, Károly Z: Thermal Plasma Decomposition of Tetrachloroethylene. PLASMA CHEMISTRY AND PLASMA PROCESSING: in press. (2018) (DOI: 1007/s11090-018-9895-1) IF: 2.355
  • Jakab E, Bora Á, Sebestyén Z, Borsa J: Thermal decomposition of chemically treated cellulosic fibers. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 132: pp.433-443. (2018) IF (2017): 1.953
  • Pekker S, Földes D, Kováts É, Bortel G, Jakab E: Új szerves-fémkoordinációs vázszerkezetek. FIZIKAI SZEMLE 68 (1): pp. 11-15. (2018)
  • Szűcs T, Jakab E, Szentannai P: Macroscopic and microscopic changes during the combustion process of non-tyre rubber waste particles. In: Gróf Gy. (szerk.) Heat Engines and Environmental Protection Proceedings of the 13th Conference. 202 p. Konferencia helye, ideje: Budapest, Magyarország, 2017.05.25-2017.05.27. Budapest: BME Energetikai Gépek és Rendszerek Tanszék, 2018. pp. 177-185. (ISBN: 978-963-313-280-7)

Instruments

Devices

  • X-ray photelectrn spectroscopy – sum-frequency spectroscopy (XPS – SFG)
  • X-ray powder diffraction (XRD)
  • pyrolysis gas chromatography – mass spectrometry (Py-GC/MS)
  • Thermogravimetry/mass spectrometry (TG/MS)
  • High-performance liquid chromatography (HPLC)
  • Fuel cell test device (Biologic)
  • Potentiostate / Galvanostate (Biologic)

High-throughput devices

  • PC controlled 16 autoclave system with separate control of the pressure in each autoclave (SPR16 – AMTEC)
  • Microwave oven with 16 autoclaves (Anton Paar Synthos 3000)
  • Heated orbital shaker with 24 reactors (Buchi Syncore reactor)
  • 16 channel flow-through reactor (in-house designed)

Education

  • Eötvös Loránd University- Catalysis Laboratory
  • Eötvös Loránd University- Green chemistry Laboratory
  • Supervision of Bsc, Msc and PhD students
  • Chemistry Summer Camp for secondary school students

Projects

  • VEKOP-2.3.2-16 (2017-2021): The excellence of strategic R & D workshops, “Material science excellence workshop: development of environmentally friendly processes for efficient use of renewable energy and raw materials and for controlled release of their energy content”
  • KTIA_AIK_12-1-2012-0014 (2013-2015): „The scientific substantiation for innovative uses of renewable energy sources and the development of modern energy storage devices”
  • H2020-MSCA-ITN-2017, 765289, FlowCamp project: European Training Network to improve materials for high-performance, low-cost next- generation redox-flow batteries
  • TNN_16: Conversion of waste into fuel by thermal methods
  • Clariant Produkte (Deutschland) GmbH research contract (2016-2017): High-throughput synthesis and testing of catalysts
  • AlvaCat research contract (2015-2016): High-throughput testing of catalysts
  • H2020 – 735977 (HyLAW Project) (2017-2018): Identification of legal rules and administrative processes applicable to Fuel Cell and Hydrogen technologies’ deployment, identification of legal barriers and advocacy towards their removal
  • TÉT_17_IN (2018-2021): Development of PEM fuel-cell stacks for utilization of hydrogen from renewable sources
  • NKM-68/2016 (2016-2018): Glycerol valorization by catalytic conversion to chemicals and alternative fuels
  • TÉT_13_DST-1-2014-0003 (2015-2018): Clean fuel recovery by chemical recycling of plastic and biomass waste
  • TÉT_12_DE-1-2013-0003 (2014-2016): Reversible reactions of inorganic salts with alcohols for heat storage
  • TÉT-12-RO-1-2012-0002 (2013-2015): New catalysts for the valorization of celullose as platform molecules: gamma-valerolactone and methyltetrahydrofurane
  • RAS-HAS/2011-2013, № 23: Design and application of immobilized polyoxometalates and metal nanoparticles for organic syntheses
  • OTKA K100793 (2012-2016): Multicomponent model catalysts for renewable energy generation: understanding the synergistic effect of metal and metal-oxide nanostructures on transformations of alcohols
  • OTKA K81959 (2010-2014): The effect of physical and chemical pretreatments on the composition and thermal behavior of lignocelluloses
  • OTKA K83770 (2011-2015): Co-pyrolysis of natural and synthetic polymer waste materials
  • OTKA K77720 (2009-2014): Catalytic hydrogen production from renewable energy sources
  • Kwaklab Research Institute Nonprofit Ltd. (2014-2015): Detailed investigation of the catalysts used in catalytic purification of polluted air

Partners

  • Aarhus University, Department of Engineering (Aarhus, Danmark)
  • AlvaCat (Sunnyvale, California, USA)
  • Anabond Sainergy Fuel Cell India (p) Ltd (Chennai, India)
  • Budapest University of Technology and Economics (Budapest, Hungary)
  • Clariant Produkte (Deutschland) GmbH. (Frankfurt am Main, Germany)
  • CSIR Indian Institute of Petroleum, Bio-Fuels Division (Dehradun, India)
  • Department of Energy and Process Engineering, Norwegian University of Science and Technology (Trondheim, Norway)
  • Eötvös Loránd University of Science (Budapest, Hungary)
  • Fraunhofer Institute of Chemical Technology (Pfinztal, Germany)
  • Global R&D, British American Tobacco (Southampton, UK)
  • Istituto di Tecnologie Avanzate per l’Energia „Nicola Giordano” (CNR-ITAE) (Messina, Italy)
  • Instituto de Catalisis y Petroleoquımica, CSIC (Madrid, Spain)
  • Instituto de Investigaciones en Catálisis y Petroquímica (Santa Fe, Argentina)
  • Institute of Catalysis SB RAS (Novosibirsk, Russia)
  • Kwaklab Research Institute Nonprofit Ltd. (Budapest, Hungary)
  • Leuphana Universität (Lüneburg, Germany)
  • Metalcom Inc. (Szentes, Hungary)
  • MTA-SZTE Stereochemistry Research Group (Szeged, Hungary)
  • National Centre for Catalysis Research & Department of Chemistry, Indian Institute of Technology – Madras (Chennai, India)
  • National Research and Development Institute for Textile and Leather (INCDTP), ICPI Division, Bucharest, Romania
  • Research & Development for Sustainable Development Division, TISTR (Pathum Thani, Thailand)
  • SINTEF Energy Research (Trondheim, Norway)
  • Department of Physical Chemistry and Materials Science, University of Szeged (Szeged, Hungary)
  • The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center, Energy Institute (Gebze-Kocaeli, Turkey)
  • University of Bucharest (Bucharest, Romania)

Photo Gallery

Leader

András Tompos

Members

]]>